翻訳と辞書
Words near each other
・ Bun Sruth
・ Bun Troy
・ Bun&Bunee
・ Bun'an
・ Bun'ei
・ Bun'yō Ishikawa
・ Bun'ō
・ Bun, Hautes-Pyrénées
・ Bun-rye's Story
・ Bun-sgoil Ghàidhlig Inbhir Nis
・ Bun-sgoil Shlèite
・ Bun-sgoil Taobh na Pàirce
・ BUN-to-creatinine ratio
・ Buna
・ Bump fire
Bump function
・ Bump gate
・ Bump Hadley
・ Bump in the Night
・ Bump in the Night (album)
・ Bump in the Night (novel)
・ Bump in the Night (TV series)
・ Bump mapping
・ Bump n' Grind (R. Kelly song)
・ Bump Nonprofit Design Studio
・ Bump of Chicken
・ Bump Off Lover
・ Bump steer
・ Bump the Show
・ Bump Wills


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bump function : ウィキペディア英語版
Bump function

In mathematics, a bump function is a function ''f'' : R''n'' → R on a Euclidean space R''n'' which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The space of all bump functions on R''n'' is denoted C^\infty_0(\mathbf^n) or C^\infty_c(\mathbf^n). The dual space of this space endowed with a suitable topology is the space of distributions.
==Examples==

The function Ψ : R → R given by
:\Psi(x) =
\begin
e^} & \mbox |x| < 1\\
0 & \mbox
\end
is an example of a bump function in one dimension. It is clear from the construction that this function has compact support, since a function of the real line has compact support if and only if it has bounded support. The proof of smoothness follows along the same lines as for the related function discussed in the Non-analytic smooth function article. This function can be interpreted as the Gaussian function e^ scaled to fit into the unit disc: the substitution y^2=1/(1-x^2) corresponds to sending ''x'' = ±1 to ''y'' = ∞.
A simple example of a bump function in ''n'' variables is obtained by taking the product of ''n'' copies of the above bump function in one variable, so
:\Phi(x_1, x_2, \dots, x_n) = \Psi(x_1)\Psi(x_2)\cdots\Psi(x_n).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bump function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.